

Vegetable washwater treatment opportunities and outcomes

o ceting our Water Reso

Eric Rozema

Overview

- Project Team
- Background
- HMGA Water Project
 - -Objectives
 - -Current work
- Water treatment
- How to get involved

Project Team

- Jody Mott HMGA Environment Canada link
- Charles Lalonde Project Manager
- Greg Riddell Technology Specialist
- Bridget Visser Communications
- Mike Saunders Water Sampling Technician
- Eric Rozema Data Analyst
- Steering Committee
 - AAFC & OMAFRA staff
 - Jamie Reaume Project Chair

Background

- Vegetable washing and processing produces large volumes of wastewater
- Untreated discharges are damaging
- Lake Simcoe Protection Act
- MOECC discharge regulations
- Lake Simcoe and Southern Georgian Bay Clean up Fund (LSGBCUF)

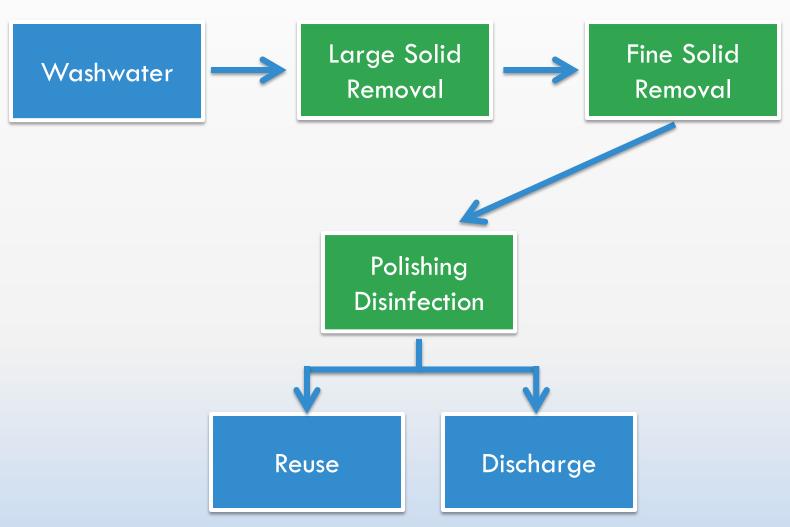
The Problem

- Very few technologies specifically designed for on-farm use
- Each situation is different
- Muck soil in water causes unique problems
- High costs

HMGA Water Project

- Characterize the washwater
- Encourage tech providers to think about agriculture
- Multiple solutions
- We do it so you don't have to
- Share all our findings

Water Treatment


- Clearly identify the problem
 - -What contaminants are present?
 - Concentrations?
 - Volumes?
 - -Treatment goals

Things to consider

Capitol cost	Operational requirements and ease of use
Operating cost	Flows (min/max; batch/continuous)
Targeted contaminants (solids, nutrients, etc.)	Seasonality
Primary, secondary, or polishing	Indoor/outdoor
Discharge or reuse	Site requirements (electricity, plumbing, etc.)
Pretreatment requirements	Waste byproducts
Footprint	Proven technology? Supported by research?

Water Treatment



Drum filter

Drum filter

Parabolic Screen Filter

Hydrocyclone

Settling Tanks and aeration

Fine Solids Removal

- Coagulation and flocculation
- Filter bags Geotubes
- Dissolved air flotation (DAF)

Other Techs

- Woodchip biofilters
- Vegetative filter strips
- Constructed wetlands

Polishing and Disinfection

- Membrane filtration
 - -Ultrafiltration
- Reverse Osmosis (RO)
- UV, ozone, chlorination

Summary

- Washwater treatment can be complicated
- A lot of options to consider
- No perfect solution
 - -Multiple components needed
- Let us help

Get involved

www.HMGAwater.ca

info@HMGAwater.ca

Visit our booth

This project was undertaken with the financial support of: Ce projet a été réalisé avec l'appui financier de :

Canada