Wash-water Treatment Systems

Gurvinder Mundi¹, Richard G. Zytner¹ and Keith Warriner² ¹School of Engineering and ²Dept. Food Science

Objectives of Research

- Develop decision matrix for wash-water options
 Efficient
 - Cost effective
- Treatment levels
 - > At a minimum, less than sewer discharge by-laws
 - ➢ PWQO
 - Meet NASM requirements
- □ Evaluate possibility of wash-water recycling
 - Maintain a high level of food safety

Types of Produce for Wash-water

- Potatoes
- Sweet Potatoes
- □ Mixed vegetable
- Ginseng
- □ Apple
- Leafy Greens

Assessment of Treatment Options

Solids removal

Density (high – settle vs. low - float)

Size (large – easy to screen out)

Source (type of vegetable, soil, and processing)

□ BOD (COD) reduction

Any indirect impact

- Pathogen elimination
 - Set targets for pathogens
 - Source (type of vegetable/fruit, soil, and processing)

Wash-water Classification

Highest to lowest	t Turbidity (NTU)		Suspended Solids (mg/L)		COD (mg/L)		Total N (mg/L)		Total P(mg/L)	
	Potato 3	1,000	Sweet Potato 2	12,732	Ginseng 2	12,103	Ginseng 2	170	Apple 1 - F1	179
	Potato 3	1,000	Ginseng 2	12,039	Potato 3	5,740	Potato 2	61	Potato 2	99
	Potato 3	1,000	Potato 3	7,794	Potato 3	5,340	Potato 3	53	Ginseng 2	76
	Potato 1	958	Potato 3	7,160	Apple 2	3,900	Potato 2	49	Apple 1 - F2	73
	Potato 1	830	Potato 2	4,706	Potato 2	2,104	Apple 2	35	Potato 3	53
	Potato 2	817	Potato 2	3,894	Potato 2	1,870	Mixed Vegetable 1	23	Potato 2	29
DeetVeestekles	Sweet Potato 1	803	Potato 1	2,846	Potato 3	1,115	Mixed Vegetable 1	22	Potato 3	26
Root vegetables;	Sweet Potato 2	749	Potato 1	2,738	Potato 1	1,049	Potato 3	17	Apple 2	14
Soil Washing	Potato 1	745	Ginseng 2	2,392	Potato 1	1,000	Potato 2	13	Sweet Potato 2	11
_	Carrot 2	700	Potato 2	1,772	Potato 1	867	Potato 3	11	Apple 1 - FR	10
	Potato 2	620	Potato 1	1,768	Sweet Potato 1	854	Potato 1	10	Potato 1	9
	Sweet Potato 1	600	Carrot 2	1,476	Potato 2	788	Ginseng 1	7	Potato 1	9
	Ginseng 2	595	Ginseng 1	1,055	Carrot 2	654	Potato 1	6	Potato 3	7
	Mixed Vegetable 1	589	Sweet Potato 1	900	Leafy Greens 1 (spinach)	583	Apple 1 - FR	4	Sweet Potato 1	7
	Ginseng 1	571	Sweet Potato 1	853	Ginseng 1	566	Potato 1	4	Potato 1	6
	Mixed Vegetable 1	530	Ginseng 1	699	Carrot 2	370	Sweet Potato 1	4	Ginseng 1	6
	Ginseng 1	448	Potato 3	698	Carrot 2	338	Ginseng 1	4	Ginseng 1	6
	Mixed Vegetable 1	347	Mixed Vegetable 1	638	Leafy Greens 1 (spinach)	294	Leafy Greens 1 (spinach)	3	Mixed Vegetable 1	5
Root veg. & Leafv	Sweet Potato 1	330	Mixed Vegetable 1	456	Ginseng 1	241	Carrot 2	3	Carrot 2	4
	Ginseng 1	124	Ginseng 1	312	Sweet Potato 1	173	Apple 1 - F1	3	Mixed Vegetable 1	4
Green Veg.; Very	Carrot 2	123	Mixed Vegetable 1	306	Mixed Vegetable 1	168	Sweet Potato 1	3	Potato 2	3
minimal soil	Leafy Greens 1 (spinach) 109	Sweet Potato 1	299	Mixed Vegetable 1	165	Leafy Greens 1 (spinach)	3	Leafy Greens 1 (spinach)	3
minimai soli	Apple 2	108	Leafy Greens 1 (spinach)	215	Apple 1 - F1	143	Carrot 2	3	Ginseng 1	2
	Carrot 2	86	Carrot 2	206	Sweet Potato 1	131	Carrot 2	2	Sweet Potato 1	1
	Leafy Greens 1 (spinach) 66	Carrot 2	182	Ginseng 1	114	Apple 1 - F2	2	Carrot 2	1
	Leafy Greens 1 (spinach) 61	Apple 1 - F1	140	Mixed Vegetable 1	110	Ginseng 1	1	Carrot 2	1
	Apple 2	56	Apple 2	126	Apple 1 - FR	66	Sweet Potato 2	nd	Leafy Greens 1 (spinach)	1
	Apple 1 - F1	23	Leafy Greens 1 (spinach)	69	Apple 1 - F2	20	Ginseng 2	nd	Ginseng 2	nd
Fruit	Apple 1 - FR	17	Apple 1 - FR	51	Leafy Greens 1 (spinach)	nd	Sweet Potato 1	nd	Sweet Potato 1	nd
	Apple 1 - F2	4	Apple 1 - F2	43	Sweet Potato 2	nd	Mixed Vegetable 1	nd	Mixed Vegetable 1	nd

RESULTS TO DATE

□ Simple settling can reduce turbidity by up to >80%

- Except for some root vegetables with post washing process
 Soil types
- Chemical aids (coagulants) can significantly increase the solid removal efficiencies for all types of wash-water

> >90%.

Centrifuge can achieve reduction of >95% without any chemical aid.

Low effectiveness for dissolved solids

Remove SS solids

- Works well for high organic loading, i.e., washwater from peeling processes.
- Ineffective for high inorganic loading, i.e., washwater with soils/sand.
- □ Some reduction in BOD (COD) levels

- Short treatment times are effective at reducing turbidity of lettuce washwater.
- Able to reduce TSS by >90%
- Able to reduce BOD by ~95%

Hydro-cyclone Results: Transmittance

- 1) Sweet potato & Mixed vegetable
- 2) Leafy greens
- 3) Potato
- 4) Carrot
- 5) Apple
- 6) Ginseng

Best Performance

Worst Performance

Ranked based on percent reduction averages.

SS and Transmittance (no peeling)

Vegetable/Fruit	Settling	DAF	Centrifuge	Hydro- cyclone	Sieve Electro- coagulation	
Potato	Good	Fair	Good	Poor	Poor	Fair
Sweet Potato	Good	Fair	Good	Poor	Poor	Good
Ginseng	Good	Fair	Good	Poor	Poor	Good
Carrot	Good	Fair	Fair	Poor	Fair	Good
Mixed Veg.	Good	Fair	Good	Fair	Fair	Good
Leafy Greens	Good	Fair	Good	Poor	Fair	Good
Apple	Poor	Fair	Fair	Poor	Poor	Good

Poor: < 50% reduction

Fair: 50 – 80% reduction

Good: >80% reduction

Results to Date – TP and TN

□ Settling and DAF

- ➤ TP > 80%
- ≻ TN variable
- Electrocoagulation
 Variable
- Centrifuge
 - > TP Fair (heavy solids) to Poor
 - ≻ TN Poor
- □ Sieve and Hydro-cyclone
 - > Not tested → negligible

Results to Date – E. coli

- All produce had E. coli in wash-water
 - Largest at 6.56 log cfu/100 ml
 - Lowest nd
- No trends as data all over the place
 Ginseng varies from nd to 6.56 log cfu/100 ml
 Apple varies from nd to 4.78 log cfu/100 ml
 On-site pre and post treatment values
- Disinfection required if water reuse desired

Electrocoagulation: Lettuce Wash-water

Parameter	% Decrease
Turbidity	99%
BOD	29%
COD	46%
E. coli	1 log cfu*
Listeria	1 log cfu

*companion work with lettuce wash-water using membrane and UV, obtain 5 log removal

- Producer and processors need to meet limits
- Regulations do not directly address limits
 - Per case basis
- Limits reference
 - Drinking water MOE
 - Release to surface water PWQO
 - Rural producers
 - Sanitary and combined sewer Municipality
 - o Further treatment

Sharing Water Technologies - 25 Feb 2015

Effluent Limits

Parameter	Target concentration for drinking water (mg/L or ppm)	Target concentration for sanitary and combined sewer discharge (mg/L or ppm)	Provincial Water Quality Objectives ³ (mg/L or ppm)	
Ammonia as N			0.02*	
Nitrate as N	10			
Nitrite as N	1			
TKN		100		
Organic Nitrogen (TKN – Ammonia as N)	0.15			
Total Phosphorus	0.01	10	0.02	
pH (Log ₁₀ [H ⁺])	6.5 – 8.5		6.5 - 8.5	
BOD		300	20 ^a	
COD				
TSS		350	25 ^a	
TDS	500			
Turbidity (NTU)	5			
Pathogens	not detectable		400 per 100 mL a	
Hardness	80 - 100			
*Fats, Oil and Grease	Site specific	150		

¹Data obtained from Supporting Document for Ontario Drinking water Quality Standards, Objectives and Guidelines, Tables 1, 2, and 4

²Data obtained from City of Toronto Sewer Discharge and Storm water Discharge Limits, Table 1

³Data obtained from Provincial Water Quality Objectives for Surface Water, some parameter are subjected to additional conditions

*See additional comments regarding parameter measurement in reference documents

^a Limits for effluent discharged to receiving waters; Guidelines for Effluent Quality and Wastewater Treatment at Federal Establishments

Comparison of solid removal technologies

Туре	Factors effecting treatment efficiency in addition to particle size, type, flow rates and retention time	Require chemical aid to operate	Cost	Footprint
Settling	settling tank dimensions	Yes and No	low	largest
Dissolved Air Flotation	saturation pressure and detention time	Yes, coagulant and flocculant	highest	large
Electrolysis	current demand; other parameters also removed	No	high	medium
Centrifuge	rotation speed	No	high	small
Hydro-cyclone	influent flow velocity	No	low	smallest

Water Recycling Quality

Water quality equal to tap water
 Possible to close the loop and reduce water consumption

Acknowledgements

The authors appreciate the financial support provided by the following partners:

Canadian Water Network

OMAFRA – U of G Partnership

OMAFRA

Contract Contract of Contract

Sharing Water Technologies - 25 Feb 2015