HMGA Water Project
  • Home
  • Project Overview
    • Project Description
    • Project Team
    • Collaborative Projects
    • FAQ
  • Publications
    • Blog
    • Factsheets
    • News Articles
  • Events
  • Gallery
  • Dedirting
  • Contact

Defining Sampling

12/7/2016

0 Comments

 
When taking samples for specific purposes, it may be necessary to have a different plan for each intention. Discrete and composite samples serve different purposes in showing what happens at a single point or over a time span. Sampling over a longer time period such as a day should have a plan outlined prior to taking any samples.
Discrete vs Composite Samples
A discrete sample is one sample taken from a single point, at a specific time; this type of sample is also called a ‘grab’ sample.  A composite sample is collected by combining grab samples from one location at different times, or samples from different locations at the same time and combined.  Where discrete samples provide data from a snap shot in time, a composite sample can provide data spread throughout a day. Figures 1 and 2 show examples of how each type of samples are used.
Picture
Figure 1: Discrete samples are taken from the inlet pipe, at the overflow points of two cells of a settling tank, and at the outlet pipe.
Picture
Figure 2: A composite sample is taken from the inlet and outlet pipe in a settling tank; samples are taken at several times and grouped together in one bottle submitted to the laboratory.
Regular Sampling Days vs. Intensive Sampling Days
During the length of the HMGA Water Project, two types of sampling days were developed to give a clear picture of the water quality over a day and over three hour intervals.  Regular sampling days involved taking one set of samples at each point of the treatment process with auto-samplers placed at the pre-treatment and post-treatment positions.  Intensive sampling days were often bordered by regular sampling days and grab samples were taken every three hours along with the collection of the composite samples from the auto-samplers. ​
0 Comments

    Project Updates

    Find articles on project-related topics here

    Archives

    December 2016
    October 2016
    September 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014

    Topics

    All
    Aerators
    Coagulation & Flocculation
    Deionization
    Discharge Characterization
    Drum Filter
    Filter Bags
    General Information
    Hydrocyclone
    Lake Simcoe
    Lesson Learned
    Muck
    Nottawasaga Valley
    Pre Treatment
    Pre-Treatment
    Sampling
    Settling Ponds/Tanks
    South-Eastern Georgian Bay
    System Evaluation
    Treatment Technologies
    Ultrafiltration
    Washing Process
    Water Quality Parameters
    Watershed

    RSS Feed

    Article Titles

    Introduction to
      Watersheds

    Lake Simcoe Watershed
    Nottawasaga Valley
      Watershed
    South-Eastern Georgian
      Bay Watershed
    Water, Water,
      Everywhere?
    The Trouble with Muck:
      Size
    Lesson Learned: Bottom-
      up Aerator to Treat
      Washwater in Settling
      Tanks
    Phosphorus, the
      Environment, and
      Farming
    Nitrogen’s Impact on Air,
      Land, and Water
    Water-borne Pathogens
      and Food Safety
    Defining Dissolved
      Oxygen
    Filter Bags
      Demonstration Site
    Organic Matter
      Breakdown &
      Biochemical Oxygen
      Demand
    Dealing with Cloudy
      Water
    Hydrocyclone
      Demonstration Test
    What IS Muck?
    Demystifying Oxidation-
      Reduction Potential
    News Release
      "Technology
      Investigation: Filter
      Bags"
    Drum Filter
      Demonstration Site
    Decomposing With(out)
      Oxygen
    Flow monitoring
    Lesson Learned: Drum
      Filter Optimization
    Polders & the Holland
      Marsh
    Vegetable Washing
      Process
    ​Dry Soil Removal
    Ultrafiltration &
      Deionization
      Demonstration Site
    News Release
      "Technology
      Investigation:
      Ultrafiltration &
      Capacitive Deionization"
    Progressive Passive
      Filtration
    ​Dissolved Air Flotation
    Clarifying the Solid
      Removal Process
    Factsheet Reading Order
    News Release:
      "Technology
      Investigation:
      Coagulation &
      Flocculation"
    Self-Indexing Filter
    Monitoring Discharge
    ​  Flows
    Settling Soil
    Mass Loading
      Calculations
    Lesson Learned:
      Technology Selection
    Electrocoagulation
    Auto-Samplers
Powered by Create your own unique website with customizable templates.